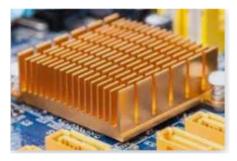
Selection of Material and Shape

A few examples on the shape – performance relationship...

How shape can be used to modify the ways in which materials behave?

Whis glass is used to consume a cold beverage?

Heat Sink???



Fins on the engine

Torsion Box?

Soundproof room

A few examples on the shape – performance relationship...

How shape can be used to modify the ways in which materials behave?

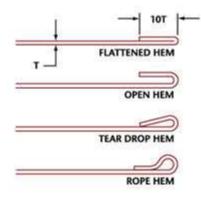
Metamaterials

Can a sheet of paper carry load?

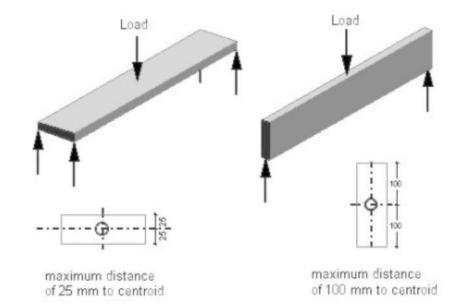
https://www.vectorstock.com/royalty-free-vector/white-sheet-of-paperbackground-vector-3726748

Macrostructure – Efficiency

Designer vs. Materials Engineer



Does the elastic modulus change when a sheet of metal is folded?



http://www.snobarcolorbar.com/technical-data/

Structural sections

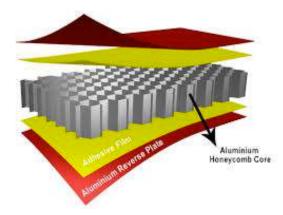
When materials are loaded in bending, in torsion, or are used as slender columns, *section shape* becomes important

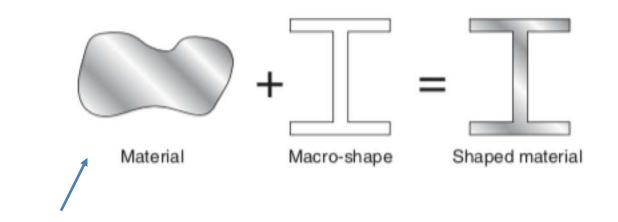
Shape = cross section formed to a

Tube
I-section
Hollow box

Simple shapes

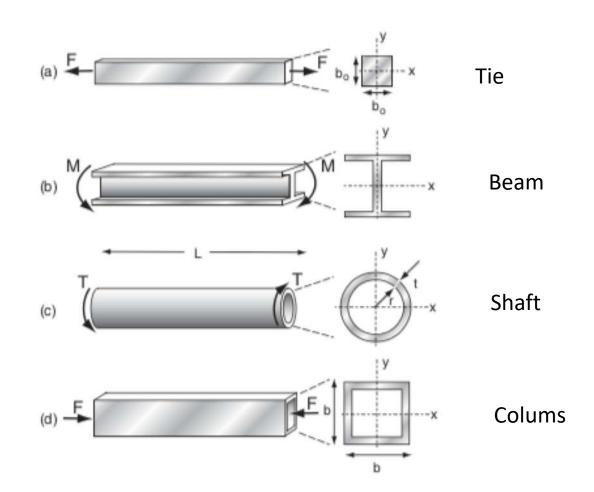
Complex shapes (relatively higher efficiency)





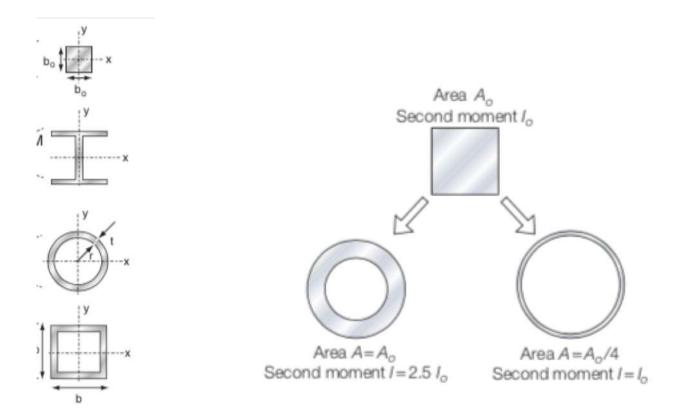
Normalized!

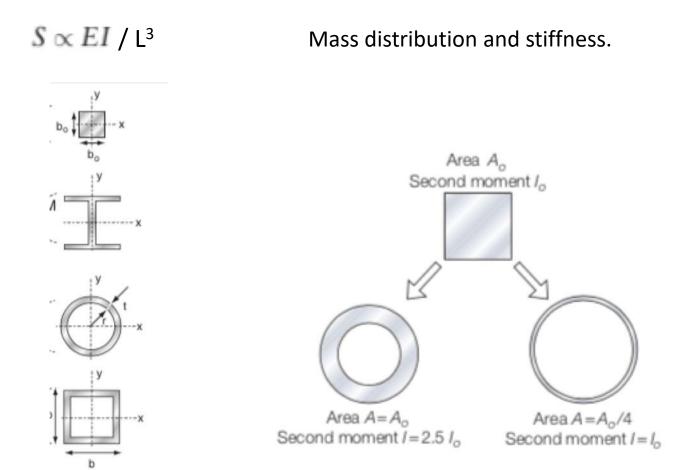
Mechanical efficiency is obtained by combining material with macroscopic shape. The shape is characterized by a dimensionless shape factor, ϕ . The schematic is suggested by Parkhouse (1984).



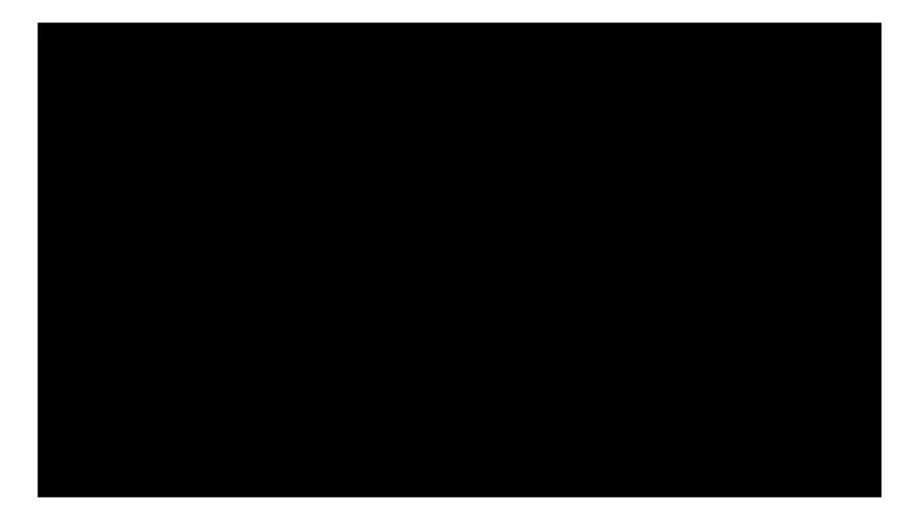
Common modes of loading and the section-shapes that are chosen to support them: (a) axial tension (b) bending (c) torsion and (d) axial compression, which can lead to buckling.

Mass distribution and stiffness.



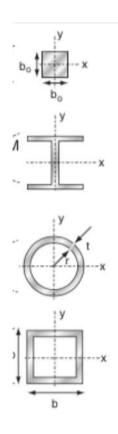


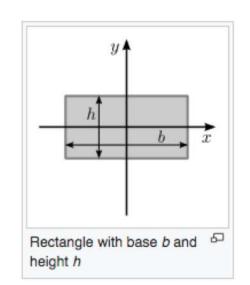
10



 $S \propto EI$ / L³

Mass distribution and stiffness.





$$I_x = \iint\limits_{\mathcal{D}} y^2 \,\mathrm{d} A = \int_{-rac{b}{2}}^{rac{b}{2}} \int_{-rac{h}{2}}^{rac{h}{2}} y^2 \,\mathrm{d} y \,\mathrm{d} x = \int_{-rac{b}{2}}^{rac{b}{2}} rac{1}{3} rac{h^3}{4} \,\mathrm{d} x = rac{bh^3}{12}$$

https://en.wikipedia.org/wiki/Second_moment_of_area_12

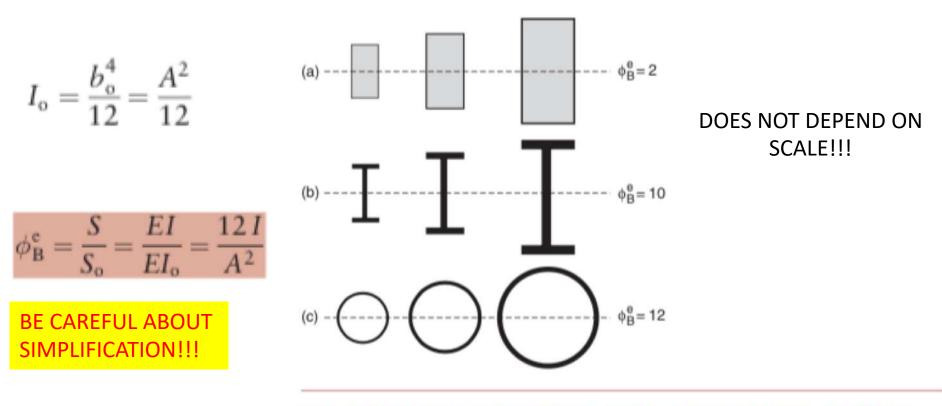
Elastic Bending of Beams

Moments of sections, and units

Section shape	Area A (m)	Moment I (m ⁴)	Moment K (m ⁴)	Moment Z (m ⁴)	Moment Q (m ⁴)	Moment Z _p (m ⁴)
	bh	$\frac{bh^3}{12}$	$\frac{bh^3}{3}\left(1-0.58\frac{b}{h}\right)$ $(h > b)$	$\frac{bh^2}{6}$	$\frac{b^2h^2}{(3h+1.8b)}$ $(h > b)$	$\frac{bh^2}{4}$
	$\frac{\sqrt{3}}{4}a^2$	$\frac{a^4}{32\sqrt{3}}$	$\frac{\sqrt{3} a^4}{80}$	a ³ 32	$\frac{a^3}{20}$	$\frac{3a^3}{64}$
2r	πr^2	$\frac{\pi}{4}r^4$	$\frac{\pi}{2}r^4$	$\frac{\pi}{4}r^3$	$\frac{\pi}{2}r^3$	$\frac{\pi}{3}r^3$
2a 2b	πab	$\frac{\pi}{4}a^{3}b$	$\frac{\pi a^3 b^3}{(a^2+b^2)}$	$\frac{\pi}{4}a^2b$	$rac{\pi}{2}a^2b$ (a < b)	$\frac{\pi}{3}a^2b$
20	$\pi (r_{ m o}^2 - r_{ m i}^2) \ pprox 2\pi rt$	$\frac{\frac{\pi}{4}(r_{\rm o}^4-r_{\rm i}^4)}{\approx \pi r^3 t}$	$\frac{\frac{\pi}{2}(r_{\rm o}^4 - r_{\rm i}^4)}{\approx 2\pi r^3 t}$	$\frac{\pi}{4r_{\rm o}}(r_{\rm o}^4 - r_{\rm i}^4) \\ \approx \pi r^2 t$	$\frac{\pi}{2r_{\rm o}}(r_{\rm o}^4 - r_{\rm i}^4) \\\approx 2\pi r^2 t$	$\frac{\frac{\pi}{3}(r_o^3 - r_i^3)}{\approx \pi r^2 t}$
t the h	$\begin{array}{l} 2t(h+b)\\ (h,b\gg t)\end{array}$	$\frac{1}{6}h^3t\left(1+3\frac{b}{h}\right)$	$\frac{2tb^2h^2}{(h+b)}\left(1-\frac{t}{h}\right)^4$	$\frac{1}{3}h^2t\left(1+3\frac{b}{h}\right)$	$2tbh\left(1-\frac{t}{h}\right)^2$	$bht\left(1+\frac{h}{2b}\right)$

Elastic Bending of Beams

Elastic Bending of Beams



(a) A set of rectangular sections with $\phi_B^e = 2$; (b) a set of I-sections with $\phi_B^e = 10$; and (c) a set of tubes with $\phi_B^e = 12$. Members of a set differ in size but not in shape.

 ϕ_{π}^{e} the shape factor for elastic bending.

$$I_{\rm o} = \frac{b_{\rm o}^4}{12} = \frac{A^2}{12}$$
 $\phi_{\rm B}^{\rm e} = \frac{S}{S_{\rm o}} = \frac{EI}{EI_{\rm o}} = \frac{12I}{A^2}$

$$\begin{aligned} \widehat{\Phi}_{0}^{e} = \frac{T}{T_{o}} = \frac{5.h^{3}}{12} \\ \widehat{\Phi}_{0}^{e} = \frac{T}{T_{o}} = \frac{5.h^{3}}{12} \\ \widehat{\Phi}_{0}^{e} = \frac{5.h^{3}}{12} \\ = \frac{5h^{3}}{5.h} = \frac{5h^{3}}{A^{2}} = \frac{5h^{3}}{A^{2}} = \frac{5h^{3}}{A^{2}} \\ = \frac{5h^{3}}{5.h} = \frac{5h^{3}}{A^{2}} = \frac{5h^{3}}{A^{2}} = \frac{5h^{3}}{5.h} \\ = \frac{5h}{5} \end{aligned}$$

Shape efficiency factors

Section shape	Bending factor, $\varphi^{\rm e}_{\rm B}$	Torsional factor, $\varphi^{\rm e}_{\rm T}$	Bending factor, $\varphi^{\rm f}_{\rm B}$	Torsional factor, $\varphi_{\rm T}^{\rm f}$	Bending factor, $\varphi_{\rm B}^{\rm pl}$
↓ h	h b	$2.38\frac{h}{b}\left(1-0.58\frac{b}{h}\right)$	$\left(\frac{h}{b}\right)^{0.5}$	$1.6\sqrt{\frac{b}{h}}\frac{1}{(1+0.6b/h)}$	$\left(\frac{h}{b}\right)^{0.5}$
	$\frac{2}{\sqrt{3}} = 1.15$	(h > b) 0.832	$\frac{3^{1/4}}{2} = 0.658$	(h > b) 0.83	$\frac{3^{1/4}}{2} = 0.658$
21	$\frac{3}{\pi} = 0.955$	1.14	$\frac{3}{2\sqrt{\pi}} = 0.846$	1.35	$\frac{4}{3\sqrt{\pi}}=0.752$
2a	$\frac{3}{\pi}\frac{a}{b}$	$\frac{2.28ab}{(a^2+b^2)}$	$\frac{3}{2\sqrt{\pi}}\sqrt{\frac{a}{b}}$	$1.35\sqrt{rac{a}{b}} \ (a < b)$	$\frac{4}{3\sqrt{\pi}}\sqrt{\frac{a}{b}} = 0.752\sqrt{\frac{a}{b}}$
	$\begin{array}{c} \frac{3}{\pi} \left(\frac{r}{t} \right) \\ (r \gg t) \end{array}$	$1.14\left(\frac{r}{t}\right)$	$\frac{3}{\sqrt{2\pi}}\sqrt{\frac{r}{t}}$	$1.91\sqrt{\frac{r}{t}}$	$\sqrt{\frac{2}{\pi}}\sqrt{\frac{r}{t}}$
	$\frac{1}{2} \frac{h}{t} \frac{(1+3b/h)}{(1+b/h)^2}$ (h, b \gg t)	$\frac{3.57b^2(1-t/h)^4}{th(1+b/h)^3}$	$\frac{1}{\sqrt{2}}\sqrt{\frac{h}{t}}\frac{(1+3b/h)}{(1+b/h)^{3/2}}$	$3.39\sqrt{\frac{h^2}{bt}}\frac{l}{\left(1+h/b\right)^{3/2}}$	$\sqrt{2}\sqrt{\frac{h^2}{bt}}\frac{(1+h/2b)}{(1+h/b)^{3/2}}$

Solid equiaxed sections (circles, squares, hexagons, octagons) all have values very close to 1 - for practical purposes, they can be set equal to 1.

$\frac{3}{\pi} \frac{a}{t} \frac{(1+3b/a)}{(1+b/a)^2}$ $(a,b \gg t)$	$\frac{9.12(ab)^{5/2}}{t(a^2+b^2)(a+b)^2}$	$\frac{3}{2\sqrt{\pi}}\sqrt{\frac{a}{t}}\frac{(1+3b/a)}{(1+b/a)^{3/2}}$	$5.41\sqrt{\frac{a}{t}}\frac{1}{\left(1+a/b\right)^{3/2}}$	$\frac{4}{\sqrt{\pi}}\sqrt{\frac{a^2}{bt}}\frac{(2+a/b)}{(1+a/b)^{3/2}}$
$\frac{3}{2}\frac{h_o^2}{bt}(h, b \gg t)$	_	$\frac{3}{\sqrt{2}}\frac{h_o}{\sqrt{bt}}$	_	$\sqrt{2} \frac{h_o}{\sqrt{bt}}$
$\frac{\frac{1}{2}h}{\left(\frac{1+3b}{h}\right)^{2}}}{\frac{\left(1+b/h\right)^{2}}{\left(h,b\gg t\right)}}$	$1.19\left(\frac{t}{b}\right)\frac{\left(1+4h/b\right)}{\left(1+h/b\right)^2}$	$\frac{1}{\sqrt{2}}\sqrt{\frac{h}{t}}\frac{(1+3b/h)}{(1+b/h)^{3/2}}$	$1.13\sqrt{\frac{t}{b}}\frac{(1+4h/b)}{(1+h/b)^{3/2}}$	$\sqrt{2}\sqrt{\frac{h^2}{bt}}\frac{(1+h/2b)}{(1+h/b)^{3/2}}$
$\frac{\frac{1}{2} \frac{h}{t} \frac{(1+4bt^2/h^3)}{(1+b/h)^2}}{(h, b \gg t)}$	$0.595 \left(\frac{t}{h}\right) \frac{\left(1+8b/h\right)}{\left(1+b/h\right)^2}$	$\frac{3}{4}\sqrt{\frac{h}{t}}\frac{(1+4bt^2/h^3)}{(1+b/h)^{3/2}}$	$0.565\sqrt{rac{t}{h}}rac{(1+8b/h)}{(1+b/h)^{3/2}}$	$\frac{1}{\sqrt{2}}\sqrt{\frac{h}{t}} \left(\frac{h}{(h+b)}\right)^{3/2} \\ \left[1 + \frac{2t(b-2t)}{h^2}\right]$
$\frac{\frac{1}{2}h}{t}\frac{(1+4bt^2/h^3)}{(1+b/h)^2}$ (h, b \gg t)	$1.19 \left(\frac{t}{h}\right) \frac{(1+4b/h)}{(1+b/h)^2}$	$\frac{3}{4}\sqrt{\frac{h}{t}}\frac{(1+4bt^2/h^3)}{(1+b/h)^{3/2}}$	$1.13\sqrt{\frac{t}{h}}\frac{(1+4b/h)}{(1+b/h)^{3/2}}$	$\frac{1}{\sqrt{2}}\sqrt{\frac{h}{t}}\left(\frac{h}{(h+b)}\right)^{3/2}\\\left[1+\frac{2t(b-2t)}{h^2}\right]$

Structural Elements

Depth (d)

Why in I shape?

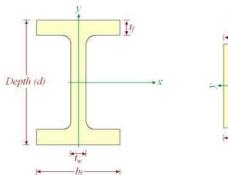
1,

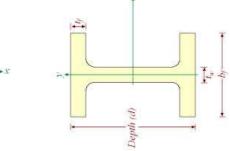
14

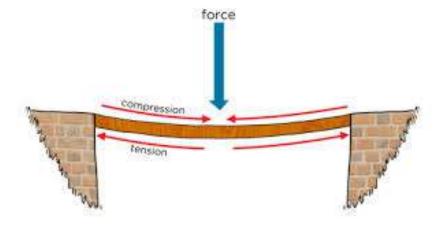
- 1

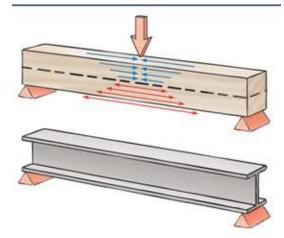
I - Beam

In which direction should it be loaded?









Is stiffness always required?

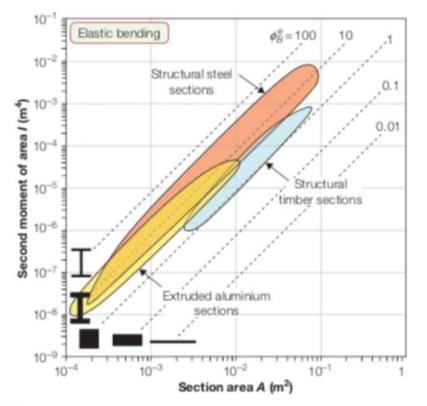
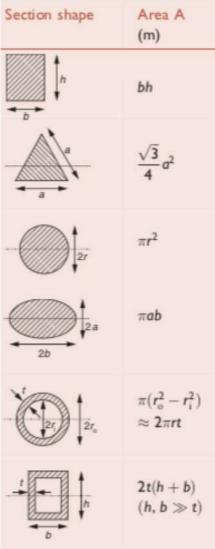


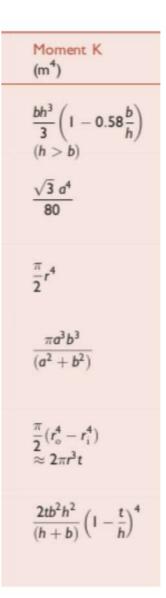
FIGURE 9.6

The second moment of area / plotted against section area A. Efficient structures have high values of the ratio I/A^2 ; inefficient structures (ones that bend easily) have low values. Real structural sections have values of I and A that lie in the shaded zones. Note that there are limits on A and on the maximum shape efficiency ϕ_B^e that depend on material.

Elastic Twisting of Shafts

Moments of sections, and units





Shape Factor for Elastic Twisting

The shape factor for elastic twisting is defined, as before, by the ratio of the torsional stiffness of the shaped section, S_T , to that, S_{T_o} , of a solid square shaft of the same length L and cross-section A, which, using equation (11.5), is:

$$\phi_{\rm T}^{\rm e} = \frac{S_{\rm T}}{S_{\rm T_o}} = \frac{K}{K_o} \tag{11.6}$$

The torsional constant K_0 for a solid square section (Table 11.1, top row with b = b) is

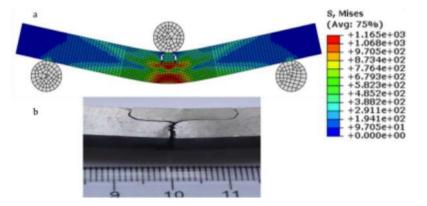
$$K_0 = 0.14A^2$$

giving

$$\phi_{\rm T}^{\rm e} = 7.14 \frac{K}{A^2} \tag{11.7}$$

22

What about failure?



$$\sigma = \frac{M y_{\rm m}}{I} = \frac{M}{Z}$$

 ϕ^{e}_{T}

Three-Point Bending Fracture Properties of Multilayer Metal Hot Forging Die Specimen, Huajun Wang et al 2019 IOP Conf. Ser.: Mater. Sci. Eng. 472 012033

ection shape	Area A (m)	Moment I (m ⁴)	Moment K (m ⁴)	Moment Z (m ⁴)	Moment Q (m ⁴)	Moment Z _p (m ⁴)
h h	bh	$\frac{bh^3}{12}$	$\frac{bh^3}{3}\left(1-0.58\frac{b}{h}\right)$ $(h > b)$	$\frac{bh^2}{6}$	$\frac{b^2h^2}{(3h+1.8b)}$	$\frac{bh^2}{4}$
	$\sqrt{3}$	$\frac{a^4}{32\sqrt{3}}$	$\frac{\sqrt{3} a^4}{80}$	$\frac{a^3}{32}$	(h > b) $\frac{a^3}{20}$	$\frac{3a^3}{64}$

Moments of sections, and units

Section shape	Area A	Moment I	Moment K	Moment Z	Moment Q	Moment Z _p
	(m)	(m⁴)	(m⁴)	(m ⁴)	(m⁴)	(m ⁴)
	bh	$\frac{bh^3}{12}$	$\frac{bh^3}{3}\left(1-0.58\frac{b}{h}\right)$ $(h > b)$	$\frac{bh^2}{6}$	$\frac{b^2h^2}{(3h+1.8b)}$ $(h > b)$	$\frac{bh^2}{4}$

$$\underbrace{\frac{t}{h}}_{b} = \underbrace{\frac{1}{h}}_{b} = \underbrace{\frac{1}{h}}_{b} = \underbrace{\frac{1}{h}}_{b} + \underbrace{\frac{$$

Strength Efficiency

The strength-efficiency of the shaped beam, $\phi_{\rm B}^{\rm f}$, is measured by the ratio $Z/Z_{\rm o}$, where $Z_{\rm o}$ is the section modulus of a reference beam of square section with the same cross-sectional area, A:

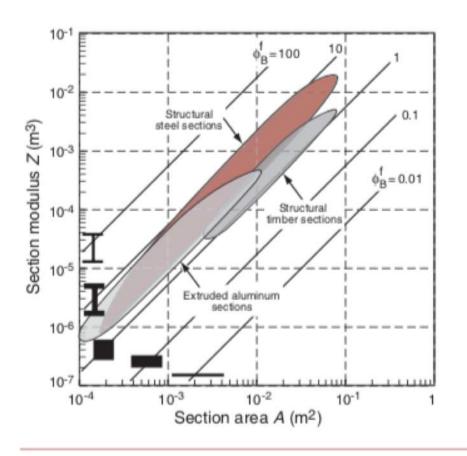
$$Z_{\rm o} = \frac{b_{\rm o}^3}{6} = \frac{A^{3/2}}{6} \tag{11.9}$$

Thus:

$$\phi_{\rm B}^{\rm f} = \frac{Z}{Z_{\rm o}} = \frac{6Z}{A^{3/2}} \tag{11.10}$$

Like the other shape-efficiency factor, it is dimensionless and therefore independent of scale, and its value for a beam with a solid square section is unity. Table 11.3 gives expressions for other shapes derived from the values of the section modulus Z, which can be found in Table 11.2. A beam with an failure shape-efficiency factor of 10 is 10 times stronger in bending than a solid square section of the same weight.

Section Modulus



A beam with a failure shape efficiency factor of 10 is 10 times stronger in bending than a solid square section of the same weight.

The section modulus, Z, plotted against section area A. Efficient structures have high values of the ratio $Z/A^{3/2}$; inefficient structures (ones that bend easily) have low values. Real structural sections have values of Z and A that lie in the shaded zones. Note that there are limits on A and on the maximum shape efficiency ϕ_B^f that depend on material.

Evaluating shape factors

A beam has a square-box section with a height h = 100 mm, a width b = 100 mm, and a wall thickness t = 5 mm. What is the value of its shape factor ϕ_B^f ?

Evaluating shape factors

A beam has a square-box section with a height h = 100 mm, a width b = 100 mm, and a wall thickness t = 5 mm. What is the value of its shape factor ϕ_B^t ?

Answer

Answer The shape factor for the box section, from Table 9.3, is $\phi_B^f = \frac{1}{\sqrt{2}} \sqrt{\frac{h}{t}} \frac{\left(1 + \frac{3b}{h}\right)}{\left(1 + \frac{b}{h}\right)^{3/2}} = 4.47$. The

box section is stronger than a solid square-section beam of the same mass per unit length by a factor of 4.5.

Failure in Torsion

$$\tau = \frac{Tr_{\rm m}}{J}$$
$$\tau = \frac{T}{Q}$$

 τ = Torsional stress

T = Torque

r_m = radial distance

J = Torsional moment of area

$$Q = J/r_m$$

$$\phi_{\rm T}^{\rm f} = \frac{Q}{Q_{\rm o}} = 4.8 \, \frac{Q}{A^{3/2}}$$

Limits to Shape Efficiency

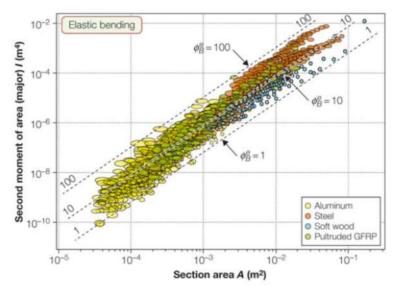


FIGURE 9.8

Log (/) plotted against log (A) for standard sections of steel, aluminum, pultruded GFRP, and wood. Contours of ϕ_B^e are shown, illustrating that there is an upper limit. A similar plot for log (Z) against log (A) reveals an upper limit for ϕ_B^t .

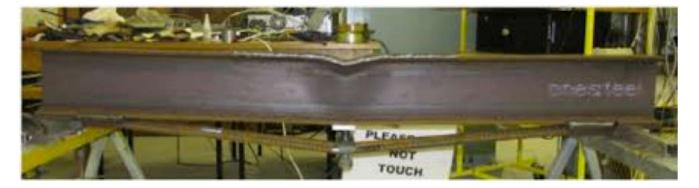
Material	$\left(\phi_{B}^{e}\right)_{max}$	$\left(\phi_{\mathrm{T}}^{\mathrm{e}}\right)_{\mathrm{max}}$	$\left(\phi_{B}^{f}\right)_{max}$	$\left(\phi_{\mathrm{T}}^{\mathrm{f}}\right)_{\mathrm{max}}$
Structural steel	65	25	13	7
6061 aluminum alloy	44	31	10	8
GFRP and CFRP	39	26	9	7
Polymers (e.g. nylons)	12	8	5	4
Woods (solid sections)	5	1	3	1
Elastomers	< 6	3	-	- 30

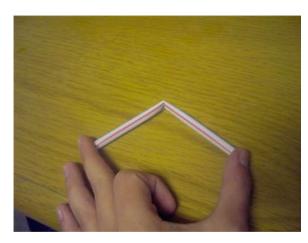
Empirical upper limits for the shape factors $\phi_{\rm B}^{\rm e}, \phi_{\rm T}^{\rm e}, \phi_{\rm B}^{\rm f}$ and $\phi_{\rm T}^{\rm f}$

Limits to Shape Efficiency

Empirical limits.

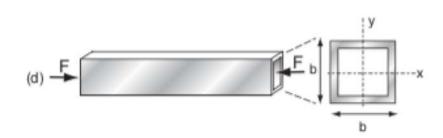
Limits imposed by local buckling.

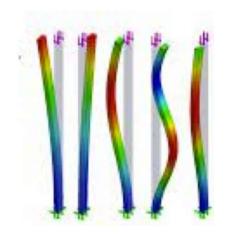




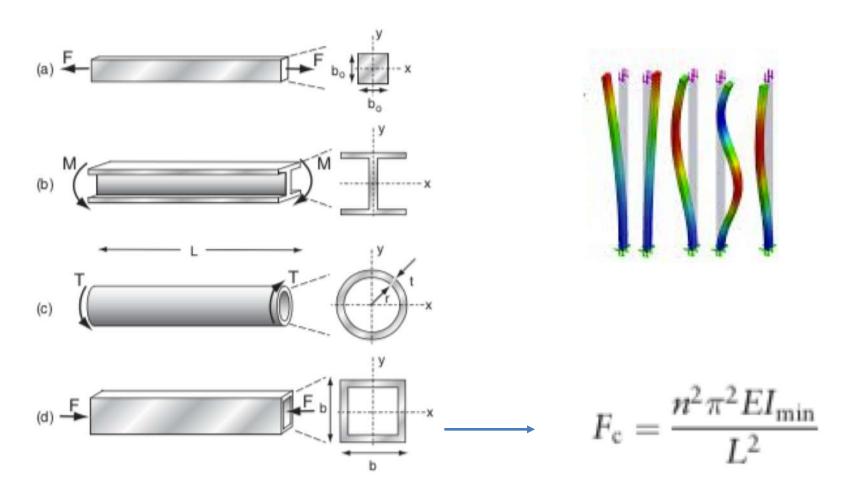
Buckling

A column of length L, loaded in compression, buckles elastically when the load exceeds the Euler load.

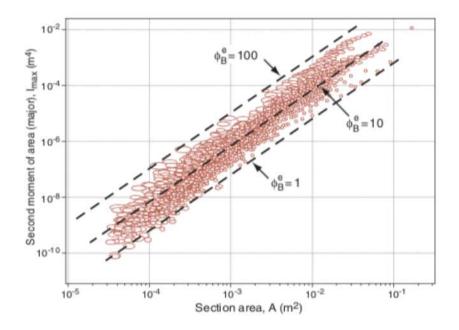




Buckling

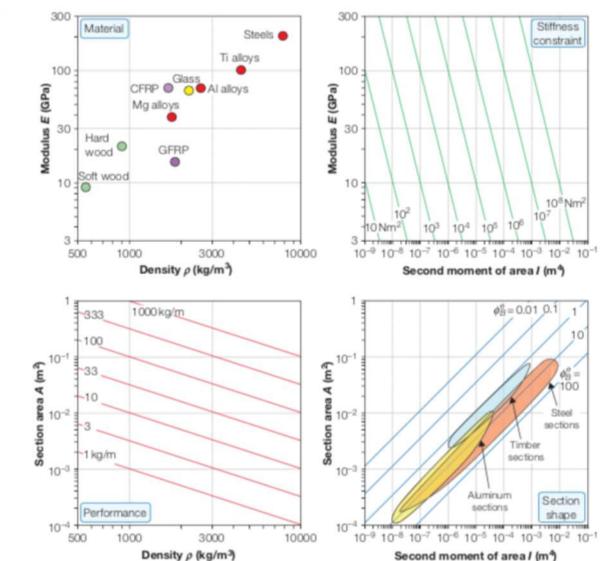


Limits to Shape Efficiency

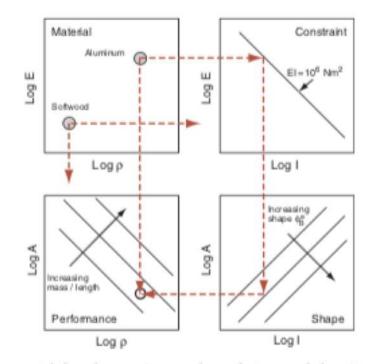


$$(\phi_{\rm B}^{\rm e})_{\rm max} \approx 2.3 \left(\frac{E}{\sigma_{\rm f}}\right)^{1/2}$$

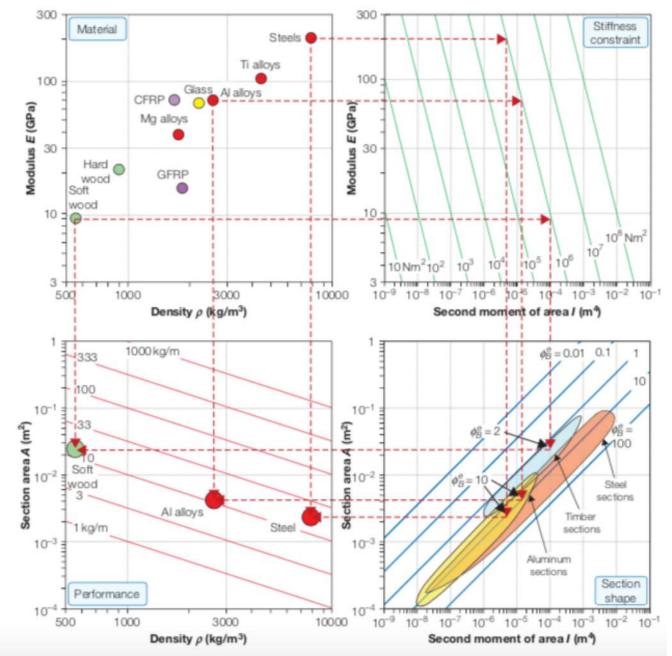
$$\left(\phi_{\mathrm{B}}^{\mathrm{f}}\right)_{\mathrm{max}} \approx \sqrt{\left(\phi_{\mathrm{B}}^{\mathrm{c}}\right)_{\mathrm{max}}}$$



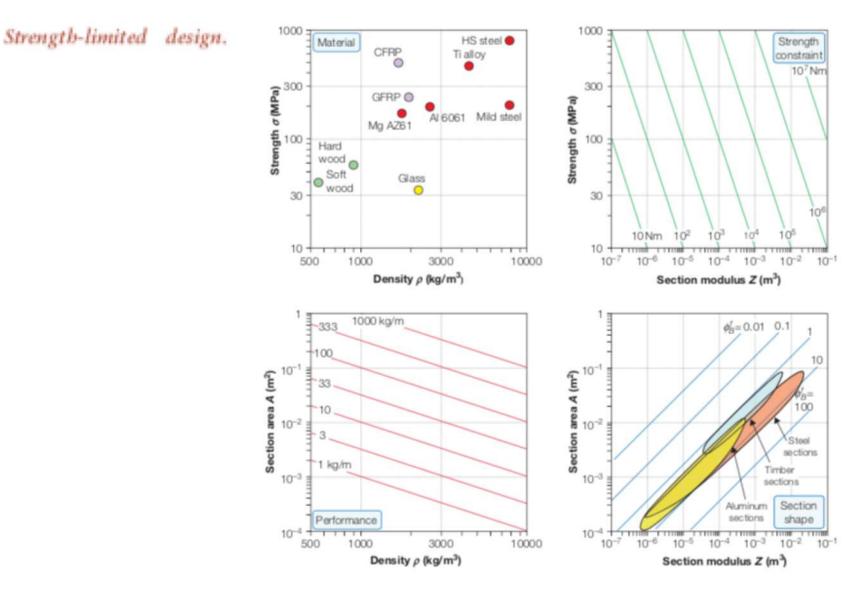
Stiffness-limited design.



- Chose a material for the section and mark its modulus E and density ρ onto the materials chart in the first quadrant of the figure.
- Choose the desired section stiffness (EI); it is a constraint that must be met by the section. Extend a horizontal line from the value of E for the material to the appropriate contour in the constraint chart in the second quadrant.
- Drop a vertical from this point onto the shape chart in the third quadrant to the line describing the shape factor φ^e_B for the section. Values of I and A outside the shaded bands are forbidden.
- Extend a horizontal line from this point to the *performance chart* in the final quadrant (the one on the bottom left). Drop a vertical from the material density ρ in the material chart. The intersection shows the mass per unit length of the section.



37



Material Indices That Include Shape

 $m = AL\rho$

Its bending stiffness is

$$S_B = C_1 \frac{EI}{L^3}$$
 (11.2.5)

where C_1 is a constant that depends only on the way the loads are distributed on the beam. Replacing I by ϕ_B^g using equation (11.3) gives

$$S_{\rm B} = \frac{C_1}{12} \frac{E}{L^3} \phi_{\rm B}^e A^2 \qquad (11.26)$$

Using this to eliminate A in equation (11.24) gives the mass of the beam.

$$m = \left(\frac{12S_{\rm B}}{C_1}\right)^{1/2} L^{5/2} \left[\frac{\rho}{(\phi_{\rm B}^c E)^{1/2}}\right] \qquad (11.27)$$

$$M_1 = \frac{\left(\phi_B^c E\right)^{1/2}}{\rho}$$

Material Indices That Include Shape

The selection of material and shape for a light, stiff, beam

Material	$\rho(Mg/m^3)$	E(GPa)	$\phi^a_{\rm B}$	$\mathbb{E}^{1/2} l \rho$	$(\phi_{B}^{*}E)^{1/2}/\rho$
1020 Steel	7.85	205	20	1.8	8.2
606 I-T4 AI	2.7	70	15	3.1	12.0
GFRP (isotropic)	1.75	28	8	2.9	8.5
Wood (oak)	0.9	13.5	2	4.1	5.8

Material Indices That Include Shape

$$S_{\mathrm{T}} = \frac{KG}{L}$$

where G is the shear modulus. Replacing K by ϕ_T^c using equation (11.7) gives

$$S_{T} = \frac{G}{7.14L}\phi_{T}^{c}A^{2}$$
(11.30)

Using this to eliminate A in equation (11.24) gives

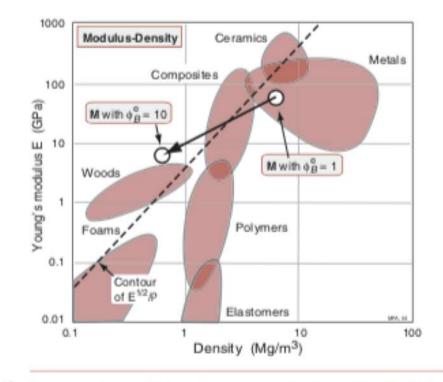
$$m = \left(7.14 \frac{S_T}{L^3}\right)^{1/2} L^{3/2} \left[\frac{\rho}{(\phi_T^2 G)^{1/2}}\right] \qquad (11.31)$$

The best material-and-shape combination is that with the greatest value of $(\phi_{\rm T}^{\rm c}G)/\rho^{1/2}$. The shear modulus, G, is closely related to Young's modulus E. For the practical purposes we approximate G by 3/8E; when the index becomes

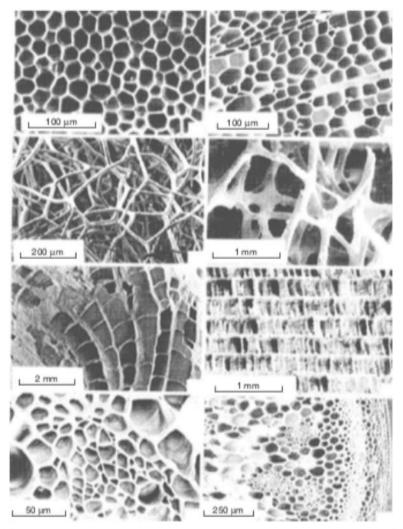
$$M_2 = \frac{(\phi_T^c E)^{1/2}}{\rho}$$
(11.32)

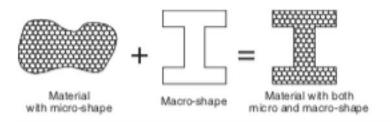
Graphical Coselecting Using Indices

$$\begin{split} M_1 &= \frac{\left(\phi_{\rm B}^{\rm e} E\right)^{1/2}}{\rho} = \frac{\left(E/\phi_{\rm B}^{\rm e}\right)^{1/2}}{\rho/\phi_{\rm B}^{\rm e}} = \frac{E^{*1/2}}{\rho^*} \\ E^* &= \frac{E}{\phi_{\rm B}^{\rm e}} \quad \text{and} \quad \rho^* = \frac{\rho}{\phi_{\rm B}^{\rm e}} \end{split}$$

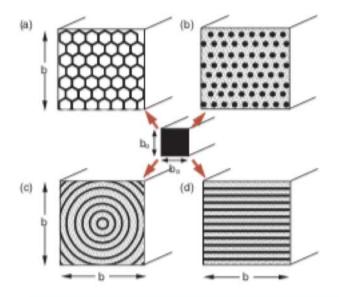


16 The structured material behaves like a new material with a modulus $E^* = E/\phi_B^*$ and a density $\rho^* = \rho/\phi_B^*$, moving it from a position below the broken selection line to one above. A similar procedure can be applied for bending strength, as described in the text.

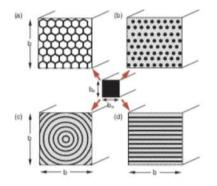




Micro-structural shape can be combined with macroscopic shape to give efficient structures. The overall shape factor is the product of the microscopic and macroscopic shape factors.



.10 Four extensive micro-structured materials that are mechanically efficient: (a) prismatic cells, (b) fibers embedded in a foamed matrix, (c) concentric cylindrical shells with foam between, and (d) parallel plates separated by foamed spacers.



.10 Four extensive micro-structured materials that are mechanically efficient: (a) prismatic cells, (b) fibers embedded in a foamed matrix, (c) concentric cylindrical shalls with foam between, and (d) parallel plates separated by foamed spacers.

. .

 $S_s \propto E_s I_s$

$$b = \left(\frac{\rho_s}{\rho}\right)^{1/2} b_o$$

a the

$$I = \frac{b^4}{12} = \frac{1}{12} \left(\frac{\rho_s}{\rho}\right)^2 b_o^4 = \left(\frac{\rho_s}{\rho}\right)^2 I_s$$

$$E = \left(\frac{\rho}{\rho_s}\right) E_s \qquad \qquad \psi_B^e = \frac{S}{S_s} = \frac{EI}{E_s I_s} = \frac{\rho_s}{\rho}$$

 ψ^{e}_{B} as the microscopic shape factor for elastic bending.

